Math 323 - Formal Mathematical Reasoning and Writing
 Problem Session
 Wednesday, 2/25/15

Recall the following theorem:
Theorem 1 If $a, b \in F$ an ordered field with $a<b$, then there is an element $r \in F$ such that $a<r<b$. In fact, $r=\frac{a+b}{2}$ is one example.

Write solutions to the following problems. Use as much detail as you would on a homework assignment.

The idea of the proof in Problem 2(a) will be useful for \#2 on the Problem Set. Problem 3 might be useful for \#3 on the Problem Set. Problem 4 might (provided you think far enough along in the problem...) be useful for \#5 on the Problem Set.

1. Which of the following are well defined?
(a) The minimum of the set S.
(b) The lower bound of the set S.
(c) A minimum of the set S.
(d) A lower bound of the set S.
2. Let $a, b \in \mathbb{Q}$ with $a>1$ and $b>0$.
(a) Prove that there exists a rational number x such that $a x=|x-b|$.
(b) How many elements are in the set $S=\{x \in F|a x=|x-b|\}$?
3. Let K be an ordered field, and let $a, b \in K$ with $a<b$. Prove that there exist numbers $r_{1}, r_{2} \in K$ with $a<r_{1}<r_{2}<b$.
4. Suppose that $a, b \in \mathbb{Q}$. Prove that if $a^{2}=2 b^{2}$, then $a=b=0$.
5. Mathematical Virtue Recall that

$$
\mathbb{Q}(\sqrt{2})=\{a+b \phi \mid a, b \in \mathbb{Q}\},
$$

and that the order \lessdot is defined by

$$
s+t \phi \lessdot u+v \phi \quad \Longleftrightarrow \quad|s-u|(s-u)<2|v-t|(v-t) .
$$

Your task in the mathematical virtue problem is to show that \lessdot satisfies trichotomy.

$\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ tip of the week!

If you want to change the numbering in an enumerate list, you can do the following:
\begin\{enumerate\} }
- Question zero!
- Question 1!
- A happy item!
\end\{enumerate\} }
0) Question zero!

1) Question 1!
(3) A happy item!

Ok, I can’t help myself. Bonus Tip! Using \mid can make spacing a bit nicer.

1.
{ } \mathrm { a } + \mathrm { b } \backslash \mathrm { phi } | \mathrm { a } , \mathrm { b } \backslash i n \backslash \operatorname { m a t h b b } \{ \mathrm { Q } \} \backslash \} gives us:

$$
\{a+b \phi \mid a, b \in \mathbb{Q}\}
$$

2. $\backslash\{\mathrm{a}+\mathrm{b} \backslash \mathrm{phi} \backslash$ mid $\mathrm{a}, \mathrm{b} \backslash i n \backslash$ mathbb\{Q\} $\backslash\}$ gives us:

$$
\{a+b \phi \mid a, b \in \mathbb{Q}\}
$$

